
ssia

PHYSICAL REVIEW E 66, 026411 ~2002!
Anisotropic plasma crystal solitons
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An analytical two-dimensional model for weakly dispersive and weakly nonlinear longitudinal and trans-
verse shear waves propagating in an ideal two-dimensional hexagonal Yukawa crystal is presented. The model
takes into account the nonlinear terms up to the third order. Both compressional and shear soliton solutions are
found in the long-wavelength approximation. It is shown that the compressional solitons are always supersonic
and weakly anisotropic. The shear solitons, on the other hand, exhibit strong anisotropy and can be both
subsonic and supersonic, depending on the direction of propagation. In the model, shear solitons cannot
propagate along the main axes. The role of weak damping as well as formation of multiple solitons is analyzed.
The results are discussed in connection with wave and Mach cone experiments in a monolayer hexagonal
plasma crystal, and a diagnostic method is proposed to measure both the charge of the microparticles and the
lattice parameter.
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I. INTRODUCTION

A soliton is an isolated wave that does not change
shape as it propagates. It was first observed by Robinson
Russel@1# on a water surface and described theoretically
Korteweg and de Vries@2#. Solitons are known to exist in
plasmas and in various media such as viscous liquid fi
flowing on a vertical wall, rotating shallow fluids, planeta
atmospheres, and magnetohydrodynamic systems@3#. Soli-
tons are also known to propagate in crystalline solids@4#.

Recently, the occurrence of solitons in dusty plasmas
been investigated. This has led to several important disc
eries. Ion-acoustic solitons were studied theoretically@5# as
well as experimentally@6#. Dust acoustic solitons in weakl
coupled dusty plasmas were predicted in Ref.@7# and con-
sidered in a number of publications~see Ref.@8# and refer-
ences therein!. The most surprising discovery, however, w
the realization that solitons can also exist in strongly coup
or even crystallized complex~dusty! plasmas. It was pre
dicted in Ref.@9# that they can exist in a one-dimension
dust lattice, and finally compressional dust-lattice solito
were observed in a two-dimensional plasma crystal@10#.

Plasma crystals can be created by adding micron-s
spherical particles to a plasma. The particles then collect
and electrons. Since the electrons have higher mobility t
the ions, the dust particles acquire a large negative charg~in
the absence of electron emission from the grain surface! @11#,
and form one component of a ‘‘complex plasma.’’ Repelli
particles are then confined by an external electric potentia
form a cloud. When the particle potential energy exceeds
kinetic energy, the cloud becomes strongly coupled@12# and
forms an ordered structure. In ground-based laboratory
periments, the dust particles are usually confined in
sheath region of a rf discharge@13–16# where the electric
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field is strong enough to levitate micron-sized spheres. T
produces a two-dimensional complex plasma with only o
or a few layers of particles.

It was suggested@17,18# that complex plasmas can b
used as a classical model system for studying crystalline
ids and microscopic phenomena therein such as wave pr
gation and phase transitions. The plasma crystals offer
advantage of being easily observed in real time with an
dinary video camera, unlike ‘‘real’’ solids.

Different wave modes can exist in plasma crystals. In
one-dimensional crystal, theory predicts compressional d
lattice waves@9# and transverse vertical waves@19#. In a
two-dimensional lattice, longitudinal~compressional! @20#
and transverse shear@21# waves were studied experimentall
More complex wave structures~Mach cones or wakes! were
also observed@22,23#.

The theory predicts that as the wavelength gets shorter
lattice waves become more dispersive@24,25#. It is well
known that a competition between the nonlinearity and d
persion of the waves can lead to the appearance of solit
In this paper we report on an analytical theory that descri
compressional and shear solitons in a monolayer hexag
dust lattice.

II. THEORETICAL MODEL

The model is based on a set of equations of motion w
ten for particles arranged in a monolayer hexagonal lat
~Fig. 1!. We assume that the particles interact via a scree
Coulomb ~Yukawa! potential. This has proved to be a ve
good approximation@26,27# for the conditions of experi-
ments we apply our theory to.

Particle spatial positionsr s are defined in our model by
the following equation:

M ~ r̈ s1n ṙ s!5 (
s8Þs

Fs8,s1fs
ext , ~1!
©2002 The American Physical Society11-1
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whereM is the particle mass;n is the damping rate due to th
drag of the neutral gas; indexs5(n,m) denotes a pair of
integer numbersn andm defining a site of a given particle in
the unperturbed crystal~particle positions arexs5m)a/2,
ys5a(n1m/2) for the coordinate system shown in Fig. 1!; a
is the particle separation; andfext is the external force excit
ing the wave. The interparticle forceFs8,s can be expresse
as

Fs8,s52“ r s
Us8,s , Us8,s5@Q2/r s8,s#exp~2r s8,s /lD!,

r s8,s5ur s82r su,

whereQ is the particle charge andlD is the Debye~screen-
ing! length. We consideredQ and lD to be constant. The
ratio a/lD is called the lattice parameter. It is an importa
parameter characterizing the properties of the plasma cry

In order to calculate the dispersion relations we assu
that if the external force is small enough, the particle d
placementsds from the equilibrium positionsr s

0 are small
compared to the particle separationa. The particle positions
are thenr s5r s

01ds and we can expand the right-hand side
Eqs. ~1! with respect to the amplitude of the displaceme
Assuming further that the displacement is harmonic, tha
ds;exp(2ivt1ik•r s), one can find the dispersion relatio
in the form of v5v(k) for the longitudinal and transvers
waves that can sustain in the lattice. The result is show
Fig. 2 for different anglesu between theX axis and the
direction of propagation. In general, the dispersion relatio
u dependent and thus anisotropic. However, it becomes
tropic in the long-wavelength approximation~small k!. In
this case, the phonons can be considered as ‘‘purely’’ lon
tudinal ~the displacement vector obeys the condition“3d
50!, or ‘‘purely’’ transverse (“d50). This is true if the
components of the dynamic matrixŴ @24,25# obey the con-
dition

kxky

k2 ~Wyy2Wxx!1Wxy

kx
22ky

2

k2 50. ~2!

This condition is valid for any wavelength if the wave prop
gates along theX or Y directions shown in Fig. 1 or in the
directions symmetric to them. It does not hold for an ar

FIG. 1. Elementary hexagonal cell of a 2D lattice with the fram
of reference used in this paper. Note that the coordinate sys
coincides with that of Ref.@21# and is orthogonal to that used i
Ref. @25#.
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trary angle of propagation and therefore the phonons are
longer purely longitudinal or purely transverse. This resu
in mixing of the longitudinal and transverse modes.

The dispersion relations obtained here are different fr
those of Ref.@24# because the former are calculated for re
directions in the crystal while the latter are along the bou
ary of the first Brillouin zone. Since we will use these resu
to derive soliton solutions in the long-wavelength appro

m

FIG. 2. Parameters of the longitudinal and transverse phon
versus the reduced wave numberka, for the angles of propagation
u50, p/4, andp/2, and for the lattice parametera/lD51. ~a! Re-
duced phonon frequency,vAMa3/Q. ~b! Reduced phonon phas
velocity, cAMa/Q, c5v/k. In the range of long wavelengths, th
dispersion sign is always negative for longitudinal phonons, the
fore, the phase velocity of these phonons always decreases w
the wave number increases. For transverse phonons, the dispe
sign depends on the angle of propagation, and the phase velo
can increase or decrease with the wave number at different an
1-2
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mation, it is worth mentioning that the calculated dispers
relations are linear for smallk in the first approximation. We
can represent the second-order dispersion corrections to
linear function as

v25c1
2~11s l l l

2k2!k2, ~3!

wherecl is the longitudinal dust-lattice wave speed,l l is the
dispersion length, ands l561 is the sign of the dispersio
correction. The same relation can be written for transve
waves with the indexesl replaced bytr. All these parameters
are listed in Table I~longitudinal waves! and in Table II
~transverse waves! for several values of the lattice paramet
a/lD , which are in the range of known experiments@15,21–
23,28#. The longitudinal dispersion lengthl l significantly ex-
ceeds the transverse dispersion lengthl tr . For the details of
the calculations see Appendix.

The spectrum of longitudinal phonons is weakly anis
tropic @25# and it has negative dispersion. This means t
the phase velocity of these waves decreases when the
number increases. In contrast, the spectrum of the transv
phonons is strongly anisotropic. Its dispersion sign chan
with the direction of propagation.

III. LONG-WAVELENGTH SOLITONS ALONG
THE MAIN AXES

The displacement vectorsds appear in the dynamical Eqs
~1! only as differences at two fixed positions. At long wav

TABLE I. Parameters of the long-wavelength linear dispers
relation ~3! for longitudinal phonons for three values of the latti
parametera/lD . cl is the longitudinal dust-lattice wave speed no
malized byc* 5Q/AMa, l l /a is the normalized dispersion length
ands l is the dispersion sign.cl ands l are independent of the angl
of propagationu, whereasl l has a weak dependence onu. Note that
X axis corresponds tou50 andY axis tou5p/2.

Any 0 p/2 Any
a/lD u cl /c* l l /a ll /a s l

0.5 3.632 1.483 1.483 21
1 2.436 0.78 0.783 21
2 1.517 0.436 0.446 21

TABLE II. Parameters of the long-wavelength linear dispers
relation ~3! for transverse phonons for three values of the latt
parametera/lD . ctr is the transverse dust-lattice wave speed n
malized byc* 5Q/AMa, l tr /a is the normalized dispersion length
and s tr is the dispersion sign.ctr is independent of the angle o
propagationu, whereasl tr strongly depends onu. The dispersion
sign is opposite for the waves propagating along the main axeX
(u50) andY (u5p/2).

Any 0 p/2 0 p/2
a/lD u ctr /c* l tr /a ltr /a s tr s tr

0.5 0.508 0.245 0.218 21 11
1 0.495 0.246 0.214 21 11
2 0.444 0.246 0.203 21 11
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lengths, one can use a Taylor expansion for these differen

ds82ds5dx]xd1dy]yd1 1
2 ~dx2]xx

2 d12dxdy]xy
2 d

1dy2]yy
2 d!1¯ ,

~4!
dx[xs8

0
2xs

0, dy[ys8
0

2ys
0, x[xs

0, y[ys
0,

where d(x,y) is the displacement vector in the continuu
limit.

As a result, we obtain a continuum model for a discre
crystal. If the particle displacements are distributed in sp
on a scale;L, then, obviously, thenth term of the series~4!
is of the order of (a/L)n, which is small in the continuum
limit. Therefore, substituting Eq.~4! into Eqs.~1!, and reex-
panding the result with respect to the~small! displacement
amplitude, one can obtain the dispersion relation in the lin
long-wavelength approximation. It is found that this agre
with Ref. @24#.

We can improve the linear theory, taking into account t
finite amplitude of the displacements. In order to simplify t
result, we treat the expansion as depending on two sm
parameters. The first parameter is the nonlinearityd/a!1,
the second is the dispersiona/L!1. In other words, we omit
the higher-order terms containing the products of these
rameters.

If we consider a one-dimensional wave propagating alo
either theX axis ~or along theY axis! ~Fig. 1!, then the
dynamic equations are

] tt
2u1n] tu5]hh

2 $ctr
2 ~u2s tr l tr

2 ]hh
2 u!

1cl
2~L1uv1 1

2 L3uv21 1
3 L4u3!1¯%,

~5!
] tt

2v1n] tv5]hh
2 $cl

2~v1 l l
2]hh

2 v !1cl
2~ 1

2 L1u21 1
2 L2v2

1 1
2 L3vu21 1

3 L4v3!1¯%,

whereh is the coordinate in the direction of the wave prop
gation; if the wave propagates along theX axis, then

h5x, u5]hdy5]dy /]x, v5]hdx5]dx /]x;

if the wave propagates along theY axis, then

h5y, u5]hdx5]dx /]y, v5]hdy5]dy /]y,

where dx and dy are the components of the displaceme
vectord. Indexesl and tr mark the parameters of the long
tudinal and transverse waves, respectively;c is the phonon
speed;s is the sign of the dispersion;l is the dispersion
length; L1 – 4 are the nonlinearity coefficients. The kinet
coefficientscl , ctr , s l , s tr , l l , l tr , andL1 – 4 are derived in
the Appendix. The values of the nonlinearity coefficients a
listed in Table III for severala/lD .

Note that Eqs.~5! correctly take into account all nonlinea
terms up to the third order. Without the nonlinear terms, E
~5! describe two independent phonons~compressional and
shear!. In the general case, Eqs.~5! are coupled, therefore
propagation of a compressional wave can generate a w

e
-

1-3
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TABLE III. Nonlinearity coefficients of the dynamic equations~5! for three values of the lattice paramet
a/lD and for waves propagating along the main axesX (u50) and Y (u5p/2). L1 and L2 are the
coefficients of the second-order nonlinearity,L3 andL4 are the coefficients of the third-order nonlinearit
The absolute values of all these coefficients increase with the lattice parameter.

0 0 0 0 p/2 p/2 p/2 p/2
a/lD u L1 L2 L3 L4 L1 L2 L3 L4

0.5 20.114 23.006 0.654 20.269 0.054 23.174 20.572 0.235
1 20.241 23.024 1.402 20.565 0.112 23.373 21.122 0.494
2 20.518 23.141 3.118 21.175 0.213 23.872 22.419 1.019
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shear, or a shear wave can produce a weak compres
However, this effect is small in the frame of the consider
approximations.

It is interesting that a ‘‘pure’’ compressional wave is po
sible without excitation of any shear wave if a compressio
disturbance propagate along one of the main axes~X or Y!. In
this caseu50 and neglecting the higher-order nonline
terms we can simplify Eqs.~5! and obtain an equation fo
nonlinear compressional waves:

] tt
2v1n] tv5]hh

2 $cl
2~v1 l l

2]hh
2 v !1 1

2 L2cl
2v2%. ~6!

This equation has well-known solutions if the damping
neglected. Assuming a solution~with a small but finite am-
plitude A! in the form of a series,

v5A sinU1A2 sin2 U1¯ , U5vt2kh, ~7!

one can easily obtain a nonlinear dispersion relation,

v25cl
2k2~12k2l l

21 3
4 L2A2!. ~8!

Note thatL2 is always negative~Table III!, so that the
phase velocity of the nonlinear compressional wave ha
diminish with increasing wave amplitude. This wave
stable against small modulations, as can be shown ea
using the well-known Lighthill criterion@29#.

The solution corresponding to a compressional soliton

v5A/cosh2~U/L !, U5h2ct, L52l l /AM221,

AL2512l l
2/L2 , M5c/cl , ~9!

wherec is the soliton propagation speed. Note that the va
of A is negative, so that the soliton amplitude isuAu.

BecauseL2,0, we have negativev. This corresponds to
a positive velocity of the particles moving in the wave,

Vx5] tdx52c]hdx[2cv52Mclv.0,

for Mach numbersM.0. The particles move forward in th
direction of the soliton propagation. This corresponds to
increase in the particle number density in agreement with
experimental observations@22,23,28#.

Let us consider the shear waves. According to Eqs.~5! it
is not possible to excite a ‘‘pure’’ shear wave without ex
tation of compression. However, since the compressio
wave propagates faster than the shear wave of the s
wavelength @(cl /ctr)

2@1#, we can consider the induce
02641
on.
d

l

to

ily,

s

e

n
e

al
me

compression as quasistationary. This allows us to omit
time derivatives in the second equation of Eqs.~5!, and to
obtain an approximate relationship,

v1 l l
2]hh

2 v'2 1
2 L1u2, ~10!

describing a stationary compression induced by a sh
wave. Note that in the long-wavelength approximation,
second term on the left-hand side of this equation is sm
too. Omitting this term, one can find a very simple estim
for the amplitude of the induced compression,

v'2 1
2 L1u2. ~11!

Inserting this induced compression into Eq.~5! we obtain
an equation that describes a nonlinear shear wave,

] tt
2u1n] tu5]hh

2 $ctr
2 ~u2s tr l tr

2 ]hh
2 u!1 1

3 L̃4cl
2u3%,

L̃45L42 3
2 L1

2. ~12!

In contrast to Eq.~6!, the nonlinear term is cubic. Beside
both the nonlinearity and dispersion are strongly anisotro
~see Appendix and Tables I, II, and III!. It should be noted
that the presence of the cubic nonlinearity in Eq.~12! favors
generation of the third harmonic of the excited shear wa

Substituting an expansion similar to Eq.~7! into Eq.~12!,
one can find a nonlinear dispersion relation~without damp-
ing! for the shear waves,

v25ctr
2 k2~11s trk

2l tr
2 1 1

4 L̃4@cl /ctr #
2A2!. ~13!

The nonlinearity coefficientL4 is of the same order of mag
nitude asL2 in Eq. ~8! for the compressional wave, but no
it is multiplied by a large factor (cl /ctr)

2@1. This makes the
nonlinear effects more pronounced.

The shear waves are always stable@29# with respect to the
modulational instability due to favorable combination of t
signs of dispersion and nonlinearity in Eq.~12!. As a conse-
quence, however, there are no shear soliton solutions in
long-wavelength approximation.

IV. SOLITONS PROPAGATING IN AN ARBITRARY
DIRECTION

If the wave propagates in an arbitrary direction, the co
tinuum model becomes very complicated due to the ani
ropy and is not considered here. We derive the anisotro
1-4
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two-dimensional dynamic equations describing the solit
waves, starting from Eq.~1!, using the procedure analogou
to that employed for deriving Eq.~5! and then substituting
the new independent variables,

U5ct2x cosu2y sinu, kx5k cosu, ky5k sinu,
~14!

whereu is the angle between the wave vector and theX axis
andc is the soliton velocity. The particular cases ofu50 ~X
direction! andu5p/2 ~Y direction! were already considere
in Sec. III.

The derived equations are analogous to Eq.~5! but sig-
nificantly more complicated. We do not write them dow
here to save space and proceed with further analysis. In t
equations, we substitute new variablesR andD which satisfy
the relations,

]Udx52D cosu2R sinu, ]Udy5R cosu2D sinu.
~15!

Then the resulting equations, which describe solitons pro
gating in an arbitrary direction, can be written in the form

~c22cl
2!D5cl

2@ l l
2~u!D91 1

2 $L2~u!D21L1~u!R2%

1L5~u!RD#2scr~u!ctr
2 l cr

2 ~u!R9,

~c22ctr
2 !R52ctr

2 @s tr~u!l tr
2 ~u!R91scr~u!l cr

2 ~u!D9#

1cl
2@ 1

2 L5~u!~D22R2!1L1~u!RD#. ~16!

Here, cl , and ctr are the above-introduced ‘‘sound
speeds for compressional and shear waves, respecti
l l(u) and l tr(u) are the dispersion lengths for the longitud
nal and transverse waves@analogous to those introduced
Eqs.~5!#; l cr(u) is the dispersion length defining the nond
agonal component of the dispersion matrix;s tr(u), and
scr(u) are the corresponding dispersion signs;L1(u),
L2(u), and L5(u) are the coefficients of the second-ord
nonlinearity~all terms of higher order are neglected!; primes
denote derivatives with respect toQ. These coefficients are
shown in Fig.~3!. It should be noted that they are, of cours
periodic functions of the angleu ~with a period ofp/3! and
thus we need only consider the interval 0<u<p/3. ~Due to
the hexagonal symmetry of the lattice, the conditions
propagation, for example, atu5p/6 along theX axis are
equivalent to those atu5p/2 along theY axis.!

The dispersion signs are defined as

scr~u!5 H 21, 0<u<p/6,
11, p/6<u<p/3,

s tr~u!5 H 21, 0<u<u* , p/32u* <u<p/3,
11, u* <u<p/32u* ,

~17!

whereu* is the critical angle at which the transverse disp
sion changes the sign~see Fig. 3!.

At critical points where the dispersion signss tr(u) and
scr(u) change, the corresponding dispersion lengthsl tr(u),
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and l cr(u) are equal to zero. This means that at these p
ticular points the dispersion corrections of the next ord
should be taken into account and the discussed theory is
valid. It is also interesting that the parametersl l(u), L1(u),
andL2(u) change monotonically in the half-period interva
0<u<p/6, whereasL5(u) does not.

Simplified particular solutions of Eqs.~16! can be found
taking into account the fact that the inequality (cl /ctr)

2@1
is valid for the values of the lattice parametera/lD for

FIG. 3. Angular dependence of the kinetic coefficients of E
~16! for two values of the lattice parametera/lD51 ~solid line!,
anda/lD52 ~dashed line!. ~a! Transversel tr and crossl cr disper-
sion lengths. They are weak functions of the lattice parameter,
vary significantly with the angle. The transverse dispersion lengt
equal to zero~transverse dispersion changes sign! at u50.284, for
a/lD51, and atu50.294, fora/lD52. ~b! Longitudinal disper-
sion lengthl l . It has a weak dependence on the angle, but stron
changes with the lattice parameter.~c! Nonlinearity coefficientsL1 ,
L5 . ~d! Nonlinearity coefficientL2 .
1-5
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known experiments. It was measured experimentally thacl

.20 mm/s @23#, and ctr.6 mm/s @21#, so that (cl /ctr)exp
2

.10@1. These measurements agree with the estimates l
in Tables I and II.

Since (cl /ctr)
2@1, we can speak of a compressional so

ton accompanied by a small shear, or a shear soliton acc
panied by a small compression as considered above
propagation along the main axesX (u50) and Y (u
5p/2). The compressional soliton, being faster, must ob
the equation obtained from Eqs.~16!,

~c22cl
2!D5cl

2l l
2~u!D91 1

2 cl
2L2~u!D2, ~18!

whereas the induced shear can be roughly estimated aR
;L5(u)D2/2.

The compressional soliton solution can be easily obtain

D5D0~u!/cosh2~U/Ll~u!!, U5ct2x cosu2y sinu,
~19!

FIG. 4. Parameters of the compressional soliton~19! versus the
angle of propagation for two values of the lattice parametera/lD

51 ~solid line! and a/lD52 ~dashed line!. ~a! Soliton parameter
D0Ll

2 normalized by the longitudinal dispersion lengthl l , ~b! soli-
ton velocity parameter (Ml

221)/D0 .
02641
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where the soliton amplitudeD0(u) and the soliton width
Ll(u) are defined by

D0~u!@Ll~u!/ l l~u!#2512/L2~u!,
~20!

~Ml
221!@Ll~u!/ l l~u!#254, Ml[c/cl .

Figure 4 shows the angular dependence of these parame
The first relation of Eqs.~20! can be simplified for the

case 0.5<a/lD<2, which is a useful approximation fo
many experiments,

uD0uLl
2>1.97lD

2 @11p~u!a/lD#, ~21!

where p(u) is a small anisotropy factor that varies in th
interval p(p/2)<p(u)<p(0) where p(p/2)50.108 and
p(0)50.224. Equation~21! is also valid in case of weak
damping and a weakly inhomogeneous crystal layer.

The soliton amplitudeD0(u) is negative at all angles o
propagation becauseL2(u),0. But the velocity componen
normal to the soliton front and the variation in the partic
number density are always positive:

VN52cD52MlclD.0, dn/n5VN /c52D.0,

N5k/k. ~22!

Since the compressional soliton is always superso
(Ml.1), it is stable against perturbations not changing
symmetry. Being faster the soliton can run away from t
perturbations. On the other hand, the soliton can gene
sound, for example, due to inhomogeneity of the real crys
This can be an effective damping mechanism. The stab
conditions against transverse perturbations have to be stu
separately.

The shear soliton, which is slower than the compressio
obeys the equation

~ctr
2 2c2!R5s tr~u!ctr

2 l tr
2 ~u!R91 1

2 cl
2L5~u!R2. ~23!

Note that atu50,p/2 the nonlinearity coefficient become
zero and the equation has no soliton solutions. The sm
compression induced by the shear soliton can be estim
using the equation

l l
2~u!D91D>2 1

2 L1~u!R2. ~24!

If the soliton width is much greater than the longitudin
dispersion length, then the first term on the left-hand side
this equation is negligible, and we can use the estimate~11!.
In the long-wavelength approximation this term can
treated as a small correction.

A solution of Eq.~23! describing the shear soliton is sim
lar to that describing the compressional soliton~19!,

R5R0~u!/cosh2@U/Ltr~u!#. ~25!

Both the amplitude and the width of this solution are defin
now by
1-6
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R0~u!@Ltr~u!/ l tr~u!#25@12s tr~u!/L5~u!#~ctr /cl !
2,

~26!
~Mtr

2 21!@Ltr~u!/ l tr~u!#2524s tr~u!, Mtr[c/ctr .

Figure 5 shows the angular dependence of these parame
We should point it out that our approximation is not va

near the points marked in Fig. 5 with dashed lines, where
dispersion lengthl tr or the nonlinear coefficientL5 becomes
very small. This agrees with our previous result that there
no shear soliton solutions propagating along the main axeX
andY. In order to construct a theory valid in these regio
one has to calculate the higher-order dispersion correct
and nonlinear coefficients, which is a very tedious proble
The long-wavelength approximation cannot be used in
case.

Note that according to Eqs.~26!, the shear soliton has t
be supersonic in the regions of the negative transverse

FIG. 5. Parameters of the shear soliton~25! versus the angle o
propagation, fora/lD51. ~a! Soliton parameterR0Ltr

2 normalized
by the longitudinal dispersion lengthl tr ; ~b! soliton velocity param-
eter (Mtr

2 21)/R0 . Dotted lines show the regions where the theo
considered here is not valid. The soliton parameter and the so
velocity parameter have very little dependence on the lattice par
eter in the range 1,a/lD,2.
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persion @determined above by Eqs.~17!#, and it has to be
subsonic in the regions of the positive dispersion. In the
ter case, the shear soliton might become unstable.

Surprisingly, the parameters of the shear soliton have o
a very weak dependence on the value of the lattice param
if 1 ,a/lD,2.

V. GENERATION OF MULTISOLITON STRUCTURES

So far we considered only single soliton solutions. Ho
ever, if the perturbation is energetic enough it can gene
several solitons. We estimate the number of solitons us
the associated Schro¨dinger equation@4,30# and assuming tha
the amplitude of all the solitons is small. In that case t
solitons propagate almost with the acoustic velocity of
phonons constituting this wave packet. Since the differe
between the soliton and the phonon speeds is small, we
further simplify our model.

For compressional waves we can rewrite Eq.~6! in the
frame of reference moving with the longitudinal phono
Omitting the damping we obtain

] tU1U]hU1 1
2 cl l l

2]hhh
3 U50, U[ 1

2 L2clv. ~27!

This equation is the well-known Korteweg–de Vries~KdV!
equation and we can use all the methods developed fo
analysis.

Following the qualitative approach proposed in Ref.@31#,
let us introduce a parameter

P5
uU0uL2

6cl l l
2 , ~28!

whereU0 is the amplitude, andL is the spatial scale of the
perturbation. Because the parameterP is directly propor-
tional to the amplitude of the perturbation, it characteriz
the nonlinearity of the initial perturbation. Note that this p
rameter identically equals unity for a single soliton.

The value ofP determines the number of solitons that c
be produced by the given initial perturbation. It was sho
in Ref. @31# that if P,1, then no more than a single solito
can be produced. IfP@1 many solitons can appear, and th
number of the solitons can be estimated asN;P1/2.

In our case, Eq.~28! can be rewritten in the more conve
nient form,

P5
uL2u
12 S L

l l
D 2 dn

n
, ~29!

which can be used for quantitative estimates.
We can estimate the value ofP for the experiments of

Ref. @10#. Substituting the measured parameters, i.e.,
number density variationdn/n50.3– 0.4, the soliton width
L52 – 2.5 mm, the lattice parametera/lD.1 into Eq.~29!,
and using the parameters estimated in Tables I, II, i.e.,uL2u
.3, l l.0.5 mm, we obtainP51.2– 1.5. This value mean
that about 1–2 well-resolved solitons should be observ
Two solitons, one strong and one weak were indeed obse
in these experiments.

n
-
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VI. ROLE OF DAMPING

The analytical soliton solutions Eqs.~9!, ~19!, and ~25!
were obtained without damping. In case of weak dampi
when the soliton width is much smaller than the damp
length, these solutions are locally valid. However, the am
tude and the width will not be constant as the soliton pro
gates. Here we calculate how these parameters change
time.

The spatial scale of damping can be estimated asLdamp
;c/n, wherec is the wave velocity andn is the damping
rate. Therefore, slower waves have shorter damping len
Since the shear wave has smaller velocity than the comp
sional, the damping affects it stronger.

Let us consider the case of a compressional soliton~9!,
but now taking into account weak damping. We introduc
new variable ‘‘flow potential’’c, defined asv5]hc and re-
write Eq. ~6! as

] tt
2c1n] tc5]h$cl

2~v1 l l
2]hh

2 v !1 1
2 L2cl

2v2%. ~30!

This form makes it easy to prove that for any solution va
ishing at infinity ~v→0, whenh→6`!, the following rela-
tions are true:

] tH52nI ,

H[E
2`

`

dhH 1

2
@cl

22~] tc!21v22 l l
2~]hv !2#1

L2

6
v3J ,

~31!

I[E
2`

`

dhcl
22~] tc!2.

FIG. 6. Trajectory of a damped compressional soliton ver
propagation time. The soliton was generated att50. The asymptote
to the soliton trajectory~dashed line! has a slope proportional to th
dust-lattice wave speedcl . Its offsetdh can be used to determin
the damping rate.
02641
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These relations correspond to wave energy conservation
energyH of any compact wave packet diminishes in tim
under the action of damping. For the soliton~9!, all param-
eters in these relations can be found analytically:

H5
4M211

5
W, I 5M2W, W5E

2`

`

dhv25
4

3
A2L,

M[
c

cl
, ~32!

where W is the soliton wave energy@31#, A is the soliton
amplitude, andM is the soliton Mach number.

If the soliton has a small amplitude, thenM'1 and as a
consequenceH'W. In this case the wave energy diminish
exponentially,

dW

dt
52nW, W5W0 exp~2nt !, ~33!

whereW0 is the initial energy~at the moment of the soliton
formation!. The soliton widthL, amplitude A, and Mach
numberM scale as

L;W21/3, uAu;W2/3, M21;W2/3, ~34!

and their time dependence is

L5L0 exp~nt/3!, A5A0 exp~22nt/3!,

M215~M021!exp~22nt/3!, ~35!

where the index 0 marks the initial values.
Now we can improve our estimate of the damping leng

for the soliton amplitude:

Ldamp'1.5c/n. ~36!

In case of no damping the soliton propagates with a c
stant velocity, whereas according to Eqs.~35! the soliton
gradually decelerates under the action of damping. The
sulting trajectory of the soliton is

s

TABLE IV. Comparison of the normalized soliton paramet
uAuL2/a2 calculated using the two-dimensional model~5! for com-
pressional solitons propagating along theX axis (u50) andY axis
(u5p/2), with the linear chain models, taking into account inte
action only with the nearest neighbors and with all neighbors. T
anisotropy accounts for 5–20% difference in the soliton paramet
The linear chain model with all neighbors differs by a factor
1.5–2.7 and can be used for rough estimates. The linear c
model with nearest neighbors differs by an order of magnitude
can be used only fora/lD@1.

a/lD

Hexagonal,
u50

Hexagonal,
u5p/2

Chain, all
neighbors

Chain, nearest
neighbors

0.5 8.779 8.315 3.155 0.329
1 2.414 2.181 1.076 0.313
2 0.726 0.616 0.414 0.263
1-8
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h2h05cl t1
3

2

c02cl

n
@12exp~22nt/3!#. ~37!

This is shown qualitatively in Fig. 6. At the initial stage, th
slope of the trajectory is determined by the initial solit
velocity c0 . Then the slope of the trajectory diminishes, d
to the decrease in the soliton velocity. At the final stage
soliton propagates with a constant velocity, which is equa
the propagation speed of the corresponding phonon.
soliton trajectory has an offset,

dh5
3

2

c02cl

n
. ~38!

If the damping is too strong, the soliton will be damp
before it forms, and then no solitons can be observed. T
can happen if the damping time 1/n is shorter than the soliton
generation time scaledt, which is

dt}
l l

2cl
S 6cl

U0
D 3/2

}
l l

2cl P
3/2 S L

l l
D 3

, ~39!

whereP is defined by Eq.~28!. Comparing this time scale
with the damping time, one can obtain a criterion,

n,ncr , ncr5
3cl

l l
S uL2u

12

dn

n D 3/2

, ~40!

defining the critical damping.
For the experiments of Ref.@10#, we have cl

520– 30 mm/s,dn/n50.4. The resulting critical damping i
ncr53.5– 5 s21. The damping due to the neutral drag w
n52.5 s21, lower than the critical damping.

VII. DISCUSSION AND APPLICATION TO EXPERIMENT

In the experiments of Ref.@10#, it was found that the
soliton parameteruAuL2 is approximately constant as th
soliton propagates. As the amplitudeuAu decreased due to
damping, the widthL increased accordingly. Even though th
linear chain model, used in Ref.@10# to interpret the mea-

TABLE V. Comparison of the normalized longitudinal dus
lattice wave speedclAMa/uQu calculated using the two
dimensional model~5! for compressional solitons propagatin
along theX axis (u50), andY axis (u5p/2), with the linear chain
models, taking into account interaction only with the nearest ne
bors and with all neighbors. The dust-lattice wave speed is isotr
in the long-wavelength approximation. The linear chain model w
all neighbors differs by a factor of 1.2–1.7 and can be used for m
estimates. The linear chain model with the nearest neighbors di
more, by a factor of 1.3–2.7, but it can also be used for rou
estimates even fora/lD&1.

a/lD

Hexagonal,
u50

Hexagonal,
u5p/2

Chain, all
neighbors

Chain, nearest
neighbors

0.5 3.632 3.632 2.094 1.404
1 2.436 2.436 1.733 1.356
2 1.517 1.517 1.281 1.163
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surements, provided a very good qualitative explanation,
found that its quantitative results disagreed by a factor
about 2.

Using the two-dimensional model~5!, we calculated the
soliton parameteruAuL2 ~Table IV! and the longitudinal dust-
lattice wave speedcl ~Table V!, and compared them to th
results obtained with the linear chain model. Whilst the a
isotropy accounts for less than 20% difference in the soli
parameter, the linear chain model~taking into account all
neighbors! is substantially different, by a factor of 1.5–2.
and can be used only for rough estimates. The linear ch
model with only nearest neighbors differs by about an or
of magnitude and should not be used. The longitudinal du
lattice wave speed is less sensitive to the model choice. B
linear chain models provide an error of less than a facto
2.7.

Even though the experiments of Ref.@10# were conducted
in a two-dimensional lattice, an anisotropy was not report
A possible reason is that the compressional solitons
weakly anisotropic with less than 20% difference in bo
soliton parameter and velocity~Fig. 4!. Only precise mea-
surements using a perfect lattice with well-controlled orie
tation can detect this difference. On the other hand, the s
solitons are strongly anisotropic. Their soliton parameter a
velocity vary by more that a factor of 3~Fig. 5!, and in
addition, they can be subsonic or supersonic. This ma
them more promising for measuring anisotropy.

So far shear solitons in complex plasmas have not b
observed to our knowledge. The experiments on the tra
verse shear waves@21# demonstrated pulsed waves, howev
they are unlikely to be shear solitons, because their wi
does not increase noticeably as the amplitude decrease
expected for solitons. In addition, their damping length
about the width of the pulse, therefore the pulses are stron
damped, and they propagate along theY axis which is a
prohibited direction in our third-order theory. A better chan
to observe shear solitons is provided for waves propaga
at an angle of about 10° to one of the main axes.

The property of the solitons—to slow down as their a
plitude decreases—could explain some observed feature
Mach cones. Laser-excited Mach cones exhibiting disti
‘‘bending’’ of the first cone is clearly visible in Figs. 5 and
of Ref. @28# at the laser scanning speed of 29.3 mm/s. Suc
feature can be understood if the first cone is formed by s
tons not linear waves like the other weaker cones.

Finally we propose a diagnostic method using solitons
is well known that the longitudinal dust-lattice speedcl is
proportional to the particle chargeQ and depends on the
lattice parametera/lD @24,28#. Measuringcl , for example,
using linear compressional waves, one can determine
constraint betweenQ and a/lD . Using solitons, one can
determine not onlycl but also the soliton parameter, whic
provides an additional constraint~21!. Thus the particle
charge and the lattice parameter can be calculated inde
dently of the measurements using ‘‘soliton diagnostics.’’

APPENDIX: KINETIC COEFFICIENTS OF A 2D-LATTICE
LAYER

In this section we derive the kinetic coefficientscl , ctr ,
s l , s tr , l l , l tr , andL1 – 5, which are used in the dispersio
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relation ~3!, the nonlinear wave equations~5! for the main
axes, and the nonlinear wave equations~16! for an arbitrary
direction. The Taylor expansion~4! of the displacement vec
tors is substituted into Eqs.~1!. The following calculations
are routine and we omit the unnecessary details.

Let us introduce four types~a, b, g, D! of sums that are
used to express the kinetic coefficients:

Si , j[$a,b,g,D% i , j5 (
s8Þs

$Ca ,Cb ,Cg ,CD%~dx! i~dy! j ,

~41!

wheredx[xs82xs , dy[ys82ys are the displacements in
troduced in Eq.~4!; all the coefficientsCa , Cb , Cg , andCD

are functions ofr[r s8,s5A(dx)21(dy)2, and can be writ-
ten as the sequential derivatives of the interparticle inte
tion energyU,

Ca5
dU

rdr
, Cb5

dCa

rdr
, Cg5

dCb

rdr
, CD5

dCg

rdr
,

U5
Q2

r
e2r /lD. ~42!

Note that for a perfect crystal~the only case we discus
here! sumsSi , j with the odd indices are identically equal
zero. Nonzero sums with even indices obey certain sym
try relations~which are valid for all sums of the type ofa, b,
g, or D!:

S0,25S2,0, S0,45S4,053S2,2, S0,653S4,212S2,4,

S6,053S2,412S4,2. ~43!

These relations allow us to reduce the number of sums
have to be calculated.

Using the sums~41! the phonon speed can be express
as

cl
25 1

2 ~a0,21b2,2!, ctr
2 5 1

2 ~a0,213b2,2!. ~44!

They are isotropic, and correspond to those shown in Fig.~2!
at the wave numberka50.

The dispersion lengths obey the relations

cl
2l l

2~u!5 1
48 @6a2,215~b4,21b2,4!1~b2,42b4,2!cos~6u!#,

s tr~u!ctr
2 l tr

2 ~u!5 1
48 @6a2,21~b4,21b2,4!

2~b2,42b4,2!cos~6u!#, ~45!
n
tio

02641
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scr~u!ctr
2 l cr

2 ~u!5 1
48 ~b2,42b4,2!sin~6u!,

where the dispersion signss tr(u), scr(u) are defined by
Eqs.~17! in the main text.

The second-order coefficients of nonlinearity are such t

cl
2L1~u!5 1

4 @6b2,21g2,41g2,42~g2,42g4,2!cos~6u!#,

cl
2L2~u!5 1

4 @18b2,215~g2,41g2,4!1~g2,42g4,2!cos~6u!#,
~46!

cl
2L5~u!5 1

4 ~g2,42g4,2!sin~u!.

The third-order coefficients of nonlinearity for the ma
directions of propagation satisfy the relations,

cl
2L3

~X!5 1
2 @3b2,213~g2,41g4,2!1D6,2#,

~47!
cl

2L3
~Y!5 1

2 @3b2,213~g2,41g4,2!1D2,6#,

cl
2L4

~X!5 1
2 @9b2,213g2,412g4,2#,

~48!
cl

2L4
~Y!5 1

2 @6b2,213g4,212g2,4#,

where upper indices (X), or ~Y! mark the direction of the
wave propagation~alongX or Y axis!.

The kinetic coefficients obey certain symmetry relation
which can be used to check calculations independently.
us introduce the difference

d~F !5F ~Y!2F ~X! ~49!

between two values taken for two main directions of t
wave propagation. Then it can be easily checked that
following relations are true:

cl
2d~ l l

2!1ctr
2 d~ l tr

2 !50, d~L1!1d~L2!50,

d~L2!13d~L4!50. ~50!

The sumsSi , j determine the dependence of the kine
coefficients on the lattice parameter. Unfortunately, th
sums could not be calculated analytically. Therefore we co
puted them numerically taking into account the interact
with 100 nearest neighbors, which should provide enou
accuracy for the lattice parameters of interest. The results
shown in Figs. 3 and 4, and listed in Tables I, II, and III.
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