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Anisotropic plasma crystal solitons
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An analytical two-dimensional model for weakly dispersive and weakly nonlinear longitudinal and trans-
verse shear waves propagating in an ideal two-dimensional hexagonal Yukawa crystal is presented. The model
takes into account the nonlinear terms up to the third order. Both compressional and shear soliton solutions are
found in the long-wavelength approximation. It is shown that the compressional solitons are always supersonic
and weakly anisotropic. The shear solitons, on the other hand, exhibit strong anisotropy and can be both
subsonic and supersonic, depending on the direction of propagation. In the model, shear solitons cannot
propagate along the main axes. The role of weak damping as well as formation of multiple solitons is analyzed.
The results are discussed in connection with wave and Mach cone experiments in a monolayer hexagonal
plasma crystal, and a diagnostic method is proposed to measure both the charge of the microparticles and the
lattice parameter.
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[. INTRODUCTION field is strong enough to levitate micron-sized spheres. This
produces a two-dimensional complex plasma with only one
A soliton is an isolated wave that does not change it©or a few layers of particles.
shape as it propagates. It was first observed by Robinson and It was suggested17,1§ that complex plasmas can be
Russel[1] on a water surface and described theoretically byused as a classical model system for studying crystalline sol-
Korteweg and de Vrie§2]. Solitons are known to exist in ids and microscopic phenomena therein such as wave propa-
plasmas and in various media such as viscous liquid filmgation and phase transitions. The plasma crystals offer an
flowing on a vertical wall, rotating shallow fluids, planetary advantage of being easily observed in real time with an or-
atmospheres, and magnetohydrodynamic sysf@hsSoli-  dinary video camera, unlike “real” solids.
tons are also known to propagate in crystalline sdlitls Different wave modes can exist in plasma crystals. In a
Recently, the occurrence of solitons in dusty plasmas hagne-dimensional crystal, theory predicts compressional dust-
been investigated. This has led to several important discovattice waves[9] and transverse vertical wav¢s9]. In a
eries. lon-acoustic solitons were studied theoreticgBlyas ~ two-dimensional lattice, longitudinalcompressional [20]
well as experimentally6]. Dust acoustic solitons in weakly and transverse shefg1] waves were studied experimentally.
coupled dusty plasmas were predicted in R@l.and con- More complex wave structurédlach cones or wakesvere
sidered in a number of publicatiorisee Ref[8] and refer-  also observedi22,23.
ences therejn The most surprising discovery, however, was ~ The theory predicts that as the wavelength gets shorter the
the realization that solitons can also exist in strongly coupled@ttice waves become more dispersi\@4,25. It is well
or even crystallized completdusty plasmas. It was pre- known that a competition between the nonlinearity and dis-
dicted in Ref.[9] that they can exist in a one-dimensional Persion of the waves can lead to the appearance of solitons.
dust lattice, and finally compressional dust-lattice solitondn this paper we report on an analytical theory that describes
were observed in a two-dimensional plasma crygtél. compres_sional and shear solitons in a monolayer hexagonal
Plasma crystals can be created by adding micron-sizedlust lattice.
spherical particles to a plasma. The particles then collect ions
and electrons. Since the electrons have higher mobility than Il. THEORETICAL MODEL
the ions, the dust particles acquire a large negative charge

the absence of electron emission from the grain suyfddg, : . .
ten for particles arranged in a monolayer hexagonal lattice

and form one component of a “complex plasma.” Repelling - . . .
P piex b peting Fig. 1). We assume that the particles interact via a screened

particles are then confined by an external electric potential té lomb (Yuk ial. This h 410 b
form a cloud. When the particle potential energy exceeds it&'OuIomP (Yukawa potential. This has proved to be a very
good approximation 26,27 for the conditions of experi-

kinetic energy, the cloud becomes strongly couglEz] and
forms an ordered structure. In ground-based laboratory eXN€NtS We apply our theory to. o

periments, the dust particles are usually confined in the Partlcleg spatial positions are defined in our model by
sheath region of a rf dischargé3-16 where the electric the following equation:

The model is based on a set of equations of motion writ-

M(Fgtvig)= >, Fg o+foX, 1)
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FIG. 1. Elementary hexagonal cell of a 2D lattice with the frame §
of reference used in this paper. Note that the coordinate system 'g 1
coincides with that of Ref[21] and is orthogonal to that used in o
Ref. [25]. transverse
whereM is the particle mass; is the damping rate due to the 4 - . - .
drag of the neutral gas; indes=(n,m) denotes a pair of 0 1 2 3 4
integer numbers andm defining a site of a given particle in Reduced wave number
the unperturbed crystdparticle positions arexs=mv3a/2,
ys=a(n+m/2) for the coordinate system shown in Fig; &
is the particle separation; ari®lis the external force excit- 3 . . .
ing the wave. The interparticle forde, s can be expressed —_— =0
o o e b
Fos= =V, Us s, Ug s=[Q¥rg slexp—rg s/\p), 2 e 8=n/2
(+]
_ o 2t -
rs’,s_|rs’7rs|v T};
whereQ is the particle charge andp is the Debye(screen- o longitudinal
ing) length. We considere® and A to be constant. The 8 )
ratio a/\p is called the lattice parameter. It is an important 'E_
parameter characterizing the properties of the plasma crystal. - 1}
In order to calculate the dispersion relations we assume 3
that if the external force is small enough, the particle dis- .g
placementsd, from the equilibrium positionsg are small &'
compared to the particle separatianThe particle positions
are therrg= r2+ ds and we can expand the right-hand side of 0 A L L
Egs. (1) with respect to the amplitude of the displacement. 4] 1 2 3 4
Assuming further that the displacement is harmonic, that is Reduced wave number

ds~exp(—iwt+ik-rg), one can find the dispersion relation

in the form of w=w(k) for the longitudinal and transverse FIG. 2. Parameters of the longitudinal and transverse phonons
waves that can sustain in the lattice. The result is shown iersus the reduced wave numbex for the angles of propagation
Fig. 2 for different angles? between theX axis and the 6=0, w/4, andx/2, and for the lattice parametar\p=1. (a) Re-
direction of propagation. In general, the dispersion relation iduced phonon frequency,yMa*/Q. (b) Reduced phonon phase

¢ dependent and thus anisotropic. However, it becomes isd/€/0City: cVMa/Q, c=w/k. In the range of long wavelengths, the

tropic in the long-wavelength approximatidsmall k). In dispersion sign is always negative for longitudinal phonons, there-

this case, the phonons can be considered as “purely” Iongifore, the phase velocity of these phonons always decreases when

tudinal (the displacement vector obeys the conditix d the wave number increases. For transv_erse phonons, the dlsper_s_lon
W N . . sign depends on the angle of propagation, and the phase velocities
=0), or “purely” transverse ¥d=0). This is true if the

i ~ can increase or decrease with the wave number at different angles.
components of the dynamic mati¥ [24,25 obey the con-

dition trary angle of propagation and therefore the phonons are no
longer purely longitudinal or purely transverse. This results
kyKy kE—K; in mixing of the longitudinal and transverse modes.
k2 (Wyy =Wy + Wy k2 =0. 2) The dispersion relations obtained here are different from

those of Ref[24] because the former are calculated for real
This condition is valid for any wavelength if the wave propa- directions in the crystal while the latter are along the bound-
gates along th& or Y directions shown in Fig. 1 or in the ary of the first Brillouin zone. Since we will use these results
directions symmetric to them. It does not hold for an arbi-to derive soliton solutions in the long-wavelength approxi-
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TABLE I. Parameters of the long-wavelength linear dispersionlengths, one can use a Taylor expansion for these differences:
relation (3) for longitudinal phonons for three values of the lattice
parametea/\p . ¢ is the longitudinal dust-lattice wave speed nor- dgs — ds= SXdyd+ Sy dyd+ z (5X2'9>2<xd+ ngéy(;l)z(yd
malized byc, =Q/\Ma, |,/a is the normalized dispersion length,

ando is the dispersion sigrt, ando, are independent of the angle + 5yza§yd) +eee,
of propagatiory, wheread, has a weak dependence @rNote that (4)
X axis corresponds t6=0 andY axis to 6= /2. 5XEXS,—X2, 5yEy2,—y2. x=x2, y=y?,
Any 0 72 Any whered(x,y) is the displacement vector in the continuum
a/\p 0 clc, I /a I /a o limit.
0.5 3.632 1483 1483 1 As a result, we obtain a continuum model for a discrete

crystal. If the particle displacements are distributed in space
on a scale-L, then, obviously, thath term of the serie&4)
is of the order of &/L)", which is small in the continuum
limit. Therefore, substituting Eq4) into Egs.(1), and reex-
mation, it is worth mentioning that the calculated dispersionPanding the result with respect to t@mal) displacement
relations are linear for smaklin the first approximation. We amplitude, one can obtain the dispersion relation in the linear
can represent the second-order dispersion corrections to tHighg-wavelength approximation. It is found that this agrees
linear function as with Ref. [24].
We can improve the linear theory, taking into account the
w?=c3(1+ o|17k?)k?, (3) finite amplitude of the displacements. In order to simplify the

result, we treat the expansion as depending on two small
wherec, is the longitudinal dust-lattice wave speédis the  parameters. The first parameter is the nonlineatfty<1,
dispersion length, and =+ 1 is the sign of the dispersion the second is the dispersianL<1. In other words, we omit
correction. The same relation can be written for transversgne higher-order terms containing the products of these pa-
waves with the indexelsreplaced bytr. All these parameters gmeters.
are listed in Table |(|Ongitudina| WaveB and in Table Il If we consider a one-dimensional wave propagating a|ong
(transverse wavedor several values of the lattice parameter gjther the X axis (or along theY axi) (Fig. 1), then the
a/\p , which are in the range of known experimeft§,21—  dynamic equations are
23,28. The longitudinal dispersion lengthsignificantly ex-

1 2.436 0.78 0.783 -1
2 1.517 0.436 0.446 -1

ceeds the transverse dispersion lerigth For the details of Jau+vau=ad2 {ch(u—oylgd’, u)
the calculations see Appendix.

The spectrum of longitudinal phonons is weakly aniso- +C2(Auv+ 3 Aguv?+ 2 Aud)+--1,
tropic [25] and it has negative dispersion. This means that (5)

the phase velocity of these waves decreases when the wave;2;, + ;4,4 :(93777{(;'2(1, +||2(93;nv)+ cA(3 Aqu+ A2
number increases. In contrast, the spectrum of the transverse
phonons is strongly anisotropic. Its dispersion sign changes + 1 Agul+ P AL+,
with the direction of propagation.
where# is the coordinate in the direction of the wave propa-
Ill. LONG-WAVELENGTH SOLITONS ALONG gation; if the wave propagates along tkeaxis, then
THE MAIN AXES

. ] ] n=X, u=4d,dy=ad,/dx, v=4,d,=dd,/X;
The displacement vectod appear in the dynamical Egs.
(1) only as differences at two fixed positions. At long wave-if the wave propagates along theaxis, then

TABLE Il. Parameters of the long-wavelength linear dispersion =y, u=d,d,=ad./dy, v=a,d,=ad, /3y
relation (3) for transverse phonons for three values of the lattice ' X e kg y o
parameter/\p . Cy, is the transverse dust-lattice wave speed nor-yhere d, and dy are the components of the displacement
malized byc, =Q/\Ma, I, /a is the normalized dispersion length, yectord. Indexesl andtr mark the parameters of the longi-
and oy, is the dispersion sigrey, is independent of the angle of ,dinal and transverse waves, respectivelys the phonon
propagationd, wheread,, strongly depends oM. The dispersion speed;o is the sign of the dispersion; is the dispersion
sign is opposite for the waves propagating along the main Axes o oh- A, , are the nonlinearity coefficients. The kinetic
(0=0) andY¥ (6=m/2). coefficientsc, , ¢, oy, oy, I, |y, andA,_, are derived in
the Appendix. The values of the nonlinearity coefficients are

alng P C??Z | O/a |7T//2a 00 Z/Z listed in Table Il for severad/\p . .

e ” ” v r Note that Eqs(5) correctly take into account all nonlinear
0.5 0.508 0.245 0.218 -1 +1 terms up to the third order. Without the nonlinear terms, Eqs.
1 0.495 0.246 0214 -1 +1 (5) describe two independent phono@mpressional and
2 0.444 0.246 0.203 -1 +1 sheay. In the general case, Eq&) are coupled, therefore

propagation of a compressional wave can generate a weak
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TABLE Ill. Nonlinearity coefficients of the dynamic equatiof® for three values of the lattice parameter
a/\p and for waves propagating along the main axe¢6=0) andY (#==/2). A; and A, are the
coefficients of the second-order nonlinearity; and A, are the coefficients of the third-order nonlinearity.
The absolute values of all these coefficients increase with the lattice parameter.

0 0 0 0 72 72 72 72
a/)\D 6 Al A2 A3 A4 Al A2 A3 A4
0.5 —0.114  —3.006 0.654 —0.269 0.054 —3.174 —-0.572 0.235
1 —0.241 —3.024 1.402 —0.565 0.112 —-3.373 —1.122 0.494
2 —0.518 —3.141 3.118 —1.175 0.213 —-3.872 —2.419 1.019

shear, or a shear wave can produce a weak compressiocompression as quasistationary. This allows us to omit all
However, this effect is small in the frame of the consideredtime derivatives in the second equation of E@®, and to

approximations. obtain an approximate relationship,
It is interesting that a “pure” compressional wave is pos- - . 5
sible without excitation of any shear wave if a compressional v+I7as,v~—3AU% (10

disturbance propagate along one of the main &Xe® Y). In o . o
this caseu=0 and neglecting the higher-order nonlinear describing a stationary compression induced by a shear

terms we can simplify Eqs(5) and obtain an equation for Wave. Note that in the Iong—wayelength'approxi.mati'on, the
nonlinear compressional waves: second term on the left-hand side of this equation is small

too. Omitting this term, one can find a very simple estimate
Fho+vow=a> {cE(v+173%, v)+3A,clv?.  (6)  for the amplitude of the induced compression,

This equation has well-known solutions if the damping is v~—1AU% (11
neglected. Assuming a solutigwith a small but finite am- _ o o .
plitude A) in the form of a series, Inserting this induced compression into Ef) we obtain

an equation that describes a nonlinear shear wave,
v=AsiNO+A%sifO+:--, O=wt—ky, (7)
2 a2y 200 2 .2 1% 2,3
dgu+vau=d; {ci(U—oylid,, u)+3A,c70%,

one can easily obtain a nonlinear dispersion relation, rnn

N 3472

w?=cfkA(1— K27+ FA,A%). ® Aa=Aamzhy 12
In contrast to Eq(6), the nonlinear term is cubic. Besides,
both the nonlinearity and dispersion are strongly anisotropic
?see Appendix and Tables I, II, and)llIt should be noted
that the presence of the cubic nonlinearity in EtR) favors

Note thatA, is always negativéTable Ill), so that the
phase velocity of the nonlinear compressional wave has t
diminish with increasing wave amplitude. This wave is
ste}ble against small modulgtlons, as can be shown eaSIIﬁ’eneration of the third harmonic of the excited shear wave.
using the well-known Lighthill criteriorf29].

The solution corresponding to a compressional soliton is Substituting an expansion similar to g into Eq. (12),
P 9 P one can find a nonlinear dispersion relatigvithout damp-

v=Alcosf(B/L), ©=7—ct, L=21,/yM?—1, ing) for the shear waves,

AL2=122/A,, M=clc,, 9) w?=co k(L + o KL+ FA e /e, PA%).  (13)
wherec is the soliton propagation speed. Note that the valuelhe nonlinearity coefficiend 4 is of the same order of mag-
of A is negative, so that the soliton amplitudeAs nitude asA, in Eq. (8) for the compregsmnal wave, but now

Because\ ,<0, we have negative. This corresponds to it is multiplied by a large factorg; /c,)°> 1. This makes the
a positive velocity of the particles moving in the wave, nonlinear effects more pronounced.
The shear waves are always stdl#8] with respect to the
Vy=ddy=—cd,dy=—cv=—Mcp>0, modulational instability due to favorable combination of the

signs of dispersion and nonlinearity in E§2). As a conse-

for Mach numberdv>0. The particles move forward in the guence, however, there are no shear soliton solutions in the
direction of the soliton propagation. This corresponds to anpng-wavelength approximation.
increase in the particle number density in agreement with the
experimental observatiori2,23,28. . . IV. SOLITONS PROPAGATING IN AN ARBITRARY

Let us consider the shear waves. According to Efsit DIRECTION
is not possible to excite a “pure” shear wave without exci-
tation of compression. However, since the compressional If the wave propagates in an arbitrary direction, the con-
wave propagates faster than the shear wave of the sami@uum model becomes very complicated due to the anisot-
wavelength[(c,/c,)?>1], we can consider the induced ropy and is not considered here. We derive the anisotropic
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two-dimensional dynamic equations describing the solitary
waves, starting from EqJ1), using the procedure analogous
to that employed for deriving Eq5) and then substituting
the new independent variables,

O=ct—xcosf—ysind, ky=kcosd, k,=ksing,
(14

where@ is the angle between the wave vector andXtexis
andc is the soliton velocity. The particular cases®f 0 (X
direction and 6= /2 (Y direction were already considered
in Sec. IlI.

The derived equations are analogous to &j.but sig-
nificantly more complicated. We do not write them down
here to save space and proceed with further analysis. In these
equations, we substitute new variabRandD which satisfy
the relations,

dpdy=—D cosf—Rsiné, dod,=Rcosfd—D sind.
(15

Then the resulting equations, which describe solitons propa-
gating in an arbitrary direction, can be written in the form

(c®=c/)D=c[I7(6)D"+3{A(6)D?+ A (0)R?}
+As(0)RD]— o (0)CHIZ (O)R,

(c?=cf)R=—ci oy (OIF(OR"+ 0 (0)1Z(6)D"]
+c[3A5(0)(D?—R?)+A(HRD]. (16)

Here, ¢,, and c, are the above-introduced “sound”
speeds for compressional and shear waves, respectively;
[,(6) andl, (0) are the dispersion lengths for the longitudi-
nal and transverse wavé¢analogous to those introduced in
Egs.(5)]; 1.,(0) is the dispersion length defining the nondi-
agonal component of the dispersion matrix;(6), and
oc.(60) are the corresponding dispersion signs;(6),
A,(0), and Ag(6#) are the coefficients of the second-order
nonlinearity(all terms of higher order are neglecigdrimes
denote derivatives with respect @. These coefficients are

Iy/8, I./8

Ii/a

FIG. 3. Angular dependence of the kinetic coefficients of Egs.
(16) for two values of the lattice parametaf\p=1 (solid line),
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shown in Fig.(3). It should be noted that they are, of course, . )
periodic functions of the anglé (with a period of#/3) and anda/\p=2 (dashed ling (&) Transversd,, and crosd,, disper-
sion lengths. They are weak functions of the lattice parameter, but

thus we need only consider the intervak @< /3. (Due to vary significantly with the angle. The transverse dispersion length is

the hexa_gonal symmetry of the lattice, the Con(_jltlons 0fequal to zerdtransverse dispersion changes $ighf=0.284, for
propagation, for example, &= /6 along theX axis are

. . a/\p=1, and at#=0.294, fora/\p=2. (b) Longitudinal disper-
equivalent to those &= /2 along theY axis)

. . . : sion lengthl, . It has a weak dependence on the angle, but strongly
The dispersion signs are defined as changes with the lattice parameti). Nonlinearity coefficients\ , ,

0= 9= /6, As. (d) Nonlinearity coefficient,.

, o< 0<m/3, )
andl.(0) are equal to zero. This means that at these par-
ticular points the dispersion corrections of the next order
should be taken into account and the discussed theory is not

17) valid. It is also interesting that the parametg(%), A(6),
andA,(#) change monotonically in the half-period interval,

where6, is the critical angle at which the transverse disper-0< #< 7/6, whereas\5(#) does not.

sion changes the sigisee Fig. 3. Simplified particular solutions of Eq$16) can be found

At critical points where the dispersion signs,(6) and taking into account the fact that the inequality fc,;)?> 1
a¢(0) change, the corresponding dispersion lendgtH¥®), is valid for the values of the lattice parametef\p for

- 0=0=<0, , 7/3— 0, =<0=ml3,
ul=) 11 9, <p<mi3—0,,
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where the soliton amplitud®,(6) and the soliton width
L,(6) are defined by

Do(O)[Li(8)/1)(8)12=12/A,(6),
(20)
(M2=1)[L(0)/1,(0)12=4, M,=clc,.

Figure 4 shows the angular dependence of these parameters.

The first relation of Eqs(20) can be simplified for the
case 0.5a/\p=<2, which is a useful approximation for
many experiments,

|Do|L?=1.97M3[1+ p(#)a/rp], (21)

where p(6) is a small anisotropy factor that varies in the
interval p(#/2)=<p(6)<p(0) where p(#/2)=0.108 and
p(0)=0.224. Equation(21) is also valid in case of weak
damping and a weakly inhomogeneous crystal layer.

The soliton amplitudd(6) is negative at all angles of
propagation becaust,(6)<0. But the velocity component
normal to the soliton front and the variation in the particle
number density are always positive:

Vy=—-cD=—-M¢,D>0, én/n=Vy/c=-D>0,
N=k/k. (22

Since the compressional soliton is always supersonic
(M,>1), it is stable against perturbations not changing its
symmetry. Being faster the soliton can run away from the
perturbations. On the other hand, the soliton can generate
sound, for example, due to inhomogeneity of the real crystal.

FIG. 4. Parameters of the compressional solitt® versus the This _C_an be an effective damping meqhanism. The stabilit_y
angle of propagation for two values of the lattice parametay, ~ conditions against transverse perturbations have to be studied

=1 (solid line) anda/\p=2 (dashed ling (a) Soliton parameter separately. . o .
DoL2 normalized by the longitudinal dispersion lendth(b) soli- The shear soliton, which is slower than the compressional,

ton velocity parameterNi2—1)/Dy. obeys the equation

2 2 _ 212 ., 1.2 2
. A — = +1 .
known experiments. It was measured experimentally ¢hat (et —CHR=0oy (0)ci I (OR"+ 37 As(O)R. (23

~ - 2
=20 mm/s[23], and ¢,~6 mm/s[21], S0 that C',/Ctr)exp . Note that atd=0,7/2 the nonlinearity coefficient becomes
=~10>1. These measurements agree with the estimates IIStPi%ro and the equation has no soliton solutions. The small

n 'ga_\bles ! ?nd L'>1 K of ional soli compression induced by the shear soliton can be estimated
ince €, /cy) , we can speak of a compressional soli- ,sing the equation

ton accompanied by a small shear, or a shear soliton accom-
panied by a small compression as considered above for
propagation along the main axe$ (#=0) and Y (6
=/2). The compressional soliton, being faster, must obe
the equation obtained from Eg4.6),

12(§)D"+D=—2A,(0)R?. (24)

¥f the soliton width is much greater than the longitudinal
dispersion length, then the first term on the left-hand side of
this equation is negligible, and we can use the estir(ite
In the long-wavelength approximation this term can be
treated as a small correction.

A solution of Eq.(23) describing the shear soliton is simi-
lar to that describing the compressional solitds),

(c?—c?)D=cl?(H)D"+ 3cA,(6)D?, (18)

whereas the induced shear can be roughly estimated as
~A5(0)D?/2.

The compressional soliton solution can be easily obtained, R=Ry(0)/cosR[O/L(6)]. (25)

D=Dy(8)/cosiF(O/L(8)), ©O=ct—xcosf—ysiné, Both the amplitude and the width of this solution are defined
(19  now by
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20 ————r——— — persion[determined above by Eq$17)], and it has to be
H a) ! subsonic in the regions of the positive dispersion. In the lat-
' ter case, the shear soliton might become unstable.
10t ! ! Surprisingly, the parameters of the shear soliton have only
a very weak dependence on the value of the lattice parameter
N / _J if 1<a/\p<2.
— [ Rl [ ]
~— ok ' 1 o
N ! ] V. GENERATION OF MULTISOLITON STRUCTURES
- F f So far we considered only single soliton solutions. How-
° 101 [ 4 ever, if the perturbation is energetic enough it can generate
1 4 : ‘ several solitons. We estimate the number of solitons using
' ' the associated Schiimger equatiof4,30] and assuming that
-20 T T the. amplitude of all the solitons is small. In that case the
00 02 04 06 08 10 solitons propagate almost with the acoustic velocity of the
angle (md) phonons constituting this wave packet. Since the difference
between the soliton and the phonon speeds is small, we can
2 . i . i . further simplify our model.
For compressional waves we can rewrite Eg). in the
Y- b) frame of reference moving with the longitudinal phonon.
1 Omitting the damping we obtain
n? ) qU+Ug,U+3cifdl U=0, U=3Acu. (27)
: OF . ) This equation is the well-known Korteweg—de Vrig&dV)
-— ' y equation and we can use all the methods developed for its
o~ analysis.
E“" 1} i Following the qualitative approach proposed in Rat],
= . let us introduce a parameter
2
-2 . . . . . = —|UO|L2 , (28
00 02 04 06 08 10 6cl|

angle (md) whereU, is the amplitude, andl is the spatial scale of the
FIG. 5. Parameters of the shear soli{@3) versus the angle of ~Perturbation. Because the parameRiis directly propor-
propagation, fora/Ap=1. (a) Soliton parameteR,L2 normalized tional to the amplitude of the perturbation, it characterizes
by the longitudinal dispersion length ; (b) soliton velocity param- the nonlinearity of the initial perturbation. Note that this pa-
eter M2 —1)/R,. Dotted lines show the regions where the theory rameter identically equals unity for a single soliton.
considered here is not valid. The soliton parameter and the soliton The value ofP determines the number of solitons that can
velocity parameter have very little dependence on the lattice paranbe produced by the given initial perturbation. It was shown

eter in the range £a/\p<2. in Ref.[31] that if P<1, then no more than a single soliton
can be produced. IP>1 many solitons can appear, and the
Ro([ L (0)/14(0)12=[120(60)/As(0)](cy I€))?, number of the solitons can be estimated\as P2,
(26) In our case, Eq(28) can be rewritten in the more conve-
(M= DL (O)/1(0)°=—40,(0), My=clcy. nient form,
Figure 5 shows the angular dependence of these parameters. _ M (E Zﬂ (29)
We should point it out that our approximation is not valid 12\ nv

near the points marked in Fig. 5 with dashed lines, where the

dispersion length, or the nonlinear coefficients becomes  which can be used for quantitative estimates.

very small. This agrees with our previous result that there are We can estimate the value &f for the experiments of

no shear soliton solutions propagating along the main Xxes Ref. [10]. Substituting the measured parameters, i.e., the

andY. In order to construct a theory valid in these regions,number density variation/n=0.3—-0.4, the soliton width

one has to calculate the higher-order dispersion corrections=2-2.5 mm, the lattice parametaf\p=1 into Eq.(29),

and nonlinear coefficients, which is a very tedious problemand using the parameters estimated in Tables |, II, |iA,)

The long-wavelength approximation cannot be used in this=3, 1;=0.5 mm, we obtairP=1.2-1.5. This value means

case. that about 1-2 well-resolved solitons should be observed.
Note that according to Eq$26), the shear soliton has to Two solitons, one strong and one weak were indeed observed

be supersonic in the regions of the negative transverse di$d these experiments.
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TABLE IV. Comparison of the normalized soliton parameter
|A|L?/a? calculated using the two-dimensional mod8) for com-
pressional solitons propagating along thexis (6=0) andY axis
(6= m/2), with the linear chain models, taking into account inter-
action only with the nearest neighbors and with all neighbors. The
anisotropy accounts for 5—-20% difference in the soliton parameters.
The linear chain model with all neighbors differs by a factor of
1.5-2.7 and can be used for rough estimates. The linear chain
model with nearest neighbors differs by an order of magnitude and
can be used only foa/\p>1.

Hexagonal, Hexagonal, Chain, all Chain, nearest

Relative coordinate, n—n o (arb. units)
P

2 a/\p 0=0 0=ml2 neighbors neighbors
0.5 8.779 8.315 3.155 0.329
&n 1 1 2414 2.181 1.076 0.313
0 \ \ 2 0.726 0.616 0.414 0.263
0 2 4 6
These relations correspond to wave energy conservation-the
Reduced time, vt P 9y

energyH of any compact wave packet diminishes in time

FIG. 6. Trajectory of a damped compressional soliton versuginder the action of damping. For the solit), all param-
propagation time. The soliton was generatet=a0. The asymptote  €ters in these relations can be found analytically:
to the soliton trajectorydashed linghas a slope proportional to the AMZ41 4
_latti i + %
dust Iattlcg wave speeq . Its offsetd»n can be used to determine H= W, = M2W, W= dm)g:_AgL,
the damping rate. 5 —w 3

VI. ROLE OF DAMPING c
=— 32
The analytical soliton solutions Eg#9), (19), and (25) C (32

were obtained without damping. In case of weak damping, ) ) ) )
when the soliton width is much smaller than the dampingvhereW is the soliton wave energ}B1], A is the soliton
length, these solutions are locally valid. However, the ampli-2mplitude, andv is the soliton Mach number.

tude and the width will not be constant as the soliton propa- f the soliton has a small amplitude, théh~1 and as a
gates. Here we calculate how these parameters change wiggnsequencel~W. In this case the wave energy diminishes

time. exponentially,

The spatial scale of damping can be estimated. as,, q
~cl/v, wherec is the wave velocity and is the damping _W: —»W, W=W, exg — vt) (33)
rate. Therefore, slower waves have shorter damping length. dt ’ '

Since the shear wave has smaller velocity than the compres- . o .
sional, the damping affects it stronger. whereW, is the initial energy(at the moment of the soliton

but now taking into account weak damping. We introduce aumberM scale as

new variable “flow potential”y, defined as) =4, and re- 13 213 /3

write Eq.(6) as L~W™5 JA[~W M= 1~WS, (34)
and their time dependence is

Pt vanp=,{cR (o +1252 )+ EA,cPo. (30 P

) ] ) L=Lgyexpvt/3), A=Ay exp —21t/3),

This form makes it easy to prove that for any solution van-

ishing at infinity (v—0, whenynp— %), the following rela- M—1=(My—1)exp —2vt/3), (35

tions are true:
where the index 0 marks the initial values.

dH=—wl, Now we can improve our estimate of the damping length

for the soliton amplitude:

o 1 As
HEfxd’?{E[Cu ‘(@) v =1 00) 71+ 5 v L amg~1.5C/v. (36)

(31 In case of no damping the soliton propagates with a con-
stant velocity, whereas according to E@85) the soliton
IEIOO dner2(a,)2. gradually decelerates under the action of damping. The re-
— sulting trajectory of the soliton is
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TABLE V. Comparison of the normalized longitudinal dust- surements, provided a very good qualitative explanation, we
lattice wave speedc;yMa/|Q| calculated using the two- found that its quantitative results disagreed by a factor of
dimensional model(5) for compressional solitons propagating about 2.
along theX axis (§=0), andY axis (9= 7/2), with the linear chain Using the two-dimensional modéb), we calculated the
models, taking into account interaction only with the nearest neighsoliton parametefA|L? (Table IV) and the longitudinal dust-
bors and with all neighbors. The dust-lattice wave speed is isotropifattice wave speed, (Table V), and compared them to the
in the long-wavelength approximation. The linear chain model withresults obtained with the linear chain model. Whilst the an-
all neighbors differs by a factor of 1.2—1.7 and can be used for mosisotropy accounts for less than 20% difference in the soliton
estimates. The linear chain model with the nearest neighbors differgarameter, the linear chain modgéking into account all
more, by a factor of 1.3-2.7, but it can also be used for rougheighbors is substantially different, by a factor of 1.5-2.7,
estimates even faa/\p=<1. and can be used only for rough estimates. The linear chain
model with only nearest neighbors differs by about an order
Hexagonal, Hexagonal, Chain, all Chain, nearest of magnitude and should not be used. The longitudinal dust-

a/\p 0=0 0=ml2 neighbors  neighbors lattice wave speed is less sensitive to the model choice. Both
linear chain models provide an error of less than a factor of

0.5 3.632 3.632 2.094 1.404 27

1 2.436 2.436 1.733 1.356 Even though the experiments of REE0] were conducted

2 1.517 1.517 1.281 1.163 in a two-dimensional lattice, an anisotropy was not reported.

A possible reason is that the compressional solitons are
weakly anisotropic with less than 20% difference in both
Co—C soliton parameter and velocityFig. 4). Only precise mea-
7= 1mo=Cit+ 2 4 [1-exp(—2ut/3)]. (37) suremeﬁts using a perfect Iatﬁtﬁi':c:‘a:J Wi2[h weﬁ/-cpontrolled orien-
tation can detect this difference. On the other hand, the shear
This is shown qualitatively in Fig. 6. At the initial stage, the solitons are strongly anisotropic. Their soliton parameter and
slope of the trajectory is determined by the initial soliton velocity vary by more that a factor of &ig. 5, and in
velocity co. Then the slope of the trajectory diminishes, dueaddition, they can be subsonic or supersonic. This makes
to the decrease in the soliton velocity. At the final stage thédhem more promising for measuring anisotropy.
soliton propagates with a constant velocity, which is equal to SO far shear solitons in complex plasmas have not been

soliton trajectory has an offset, verse shear wav¢g1] demonstrated pulsed waves, however,
they are unlikely to be shear solitons, because their width

3 ¢co—C does not increase noticeably as the amplitude decreases, as
577:§ - (39 expected for solitons. In addition, their damping length is

about the width of the pulse, therefore the pulses are strongly
If the damping is too strong, the soliton will be damped damped, and they propagate along theaxis which is a
before it forms, and then no solitons can be observed. Thiprohibited direction in our third-order theory. A better chance
can happen if the damping timezdis shorter than the soliton to observe shear solitons is provided for waves propagating
generation time scalét, which is at an angle of about 10° to one of the main axes.
an The property of the solitons—to slow down as their am-
" |_| %) " ly plitude decreases—could explain some observed features of
2¢c; |\ Ug 2¢,P37? Mach cones. Laser-excited Mach cones exhibiting distinct
“bending” of the first cone is clearly visible in Figs. 5 and 6

whereP is defined by Eq(28). Comparing this time scale of Ref.[28] at the laser scanning speed of 29.3 mm/s. Such a

L 3
nE

with the damping time, one can obtain a criterion, feature can be understood if the first cone is formed by soli-
32 tons not linear waves like the other weaker cones.
v<vg, Vcrzﬁ M @) , (40) Finally we propose a diagnostic method using solitons. It
[l 112 n is well known that the longitudinal dust-lattice speedis

proportional to the particle charg® and depends on the
lattice parametea/\p [24,28. Measuringc,, for example,
using linear compressional waves, one can determine the
constraint betweer@Q and a/\p. Using solitons, one can
determine not only, but also the soliton parameter, which
provides an additional constrairil). Thus the particle

charge and the lattice parameter can be calculated indepen-
VIl. DISCUSSION AND APPLICATION TO EXPERIMENT dently of the measurements using “soliton diagnostics.”

defining the critical damping.

For the experiments of Ref[10], we have c
=20-30 mm/s,sn/n=0.4. The resulting critical damping is
ver=3.5-551. The damping due to the neutral drag was
v=2.5s1, lower than the critical damping.

In the experiments of Ref10], it was found that the
soliton parametefA|L? is approximately constant as the
soliton propagates. As the amplitud decreased due to
damping, the width. increased accordingly. Even though the  In this section we derive the kinetic coefficierds c,,,
linear chain model, used in Rdf10] to interpret the mea- o, oy, ||, l;;, andA_s, which are used in the dispersion

APPENDIX: KINETIC COEFFICIENTS OF A 2D-LATTICE
LAYER
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relation (3), the nonlinear wave equatiortS) for the main 0er(0)C212,(0)= 5 (Boa— Bar)SIN(60),
axes, and the nonlinear wave equatioh) for an arbitrary ’ ’

direction. The Taylor expansia@) of the displacement vec- where the dispersion signs,(6), o (6) are defined by
tors is substituted into Eqgl). The following calculations  Egs.(17) in the main text.

are routine and we omit the unnecessary details. The second-order coefficients of nonlinearity are such that

Let us introduce four type&r, B, y, A) of sums that are
used to express the kinetic coefficients: c?Aq(6)= i[6B2.2% Vout You— (V24— ¥42)C0%66)],

S j={a.B,7,A}ij= > {C, ,Cg.,C, ,CAM(BX)'(8Y), C2A5(0)=3[18B2. 2% 5(Vaut V2.u) + (V24— ¥42C0L60)],

s'#s (46)
(41)
2 _1 _ H

where 8x=x¢ —Xs, dy=Ys —Ys are the displacements in- CiAs(0)=3(y24~ va2SIN(0).

troduced in Eq(4); all the coefficientC,,, C4z, C,,, andC, The third-ord ici ¢ i itv for th .
are functions off =rgy ¢= (6x)“+(dy)<, and can be writ- di t('a thir f—or er CO? |C|entt_s otr?om?etgrlty or the main
ten as the sequential derivatives of the interparticle interac?'f€ctions of propagation sa isfy the relations,

tion energyy,
¥ CPAYI=1[3B 1+ 3(vast 49+ Ao,

o _du _ _dc, _ _dc, _ _dc, (47
“rdr AT rdr Y rdr? A rdr CPAS = 3[3Bo2+ 3(vaut ¥4+ Az,
Q’ CPAYY= 598221 324+ 274l

— = A II\p
U= ; e . (42 48)

24 (Y)_1
CrA, ' =35[6B55+3y4,+2 ,
Note that for a perfect crystdthe only case we discuss A2 =216B22% 374572724

herg sumsS; ; with the odd indices are identically equal to
zero. Nonzero sums with even indices obey certain symm
try relations(which are valid for all sums of the type of B,

where upper indicesX), or (Y) mark the direction of the
Qvave propagatiorfalong X or Y axis).
The kinetic coefficients obey certain symmetry relations,

% orA): which can be used to check calculations independently. Let
S0=S20, Soa=Su0=3S22. Soe=3Sss+2S,4, us introduce the difference
— Y X
S5.0= 354+ 254, 43) 8(F)=F"—F& (49

These relations allow us to reduce the number of sums thdtetween two values taken for two main directions of the
have to be calculated. wave propagation. Then it can be easily checked that the

Using the sumg41) the phonon speed can be expressedollowing relations are true:
as

c?8(17)+c58(15)=0, 8(Ay)+8(A)=0,
cf=3(aozt B22), Ch=3(a02t3B22- (44)

They are isotropic, and correspond to those shown in(Bjg.
at the wave numbeka=0.
The dispersion lengths obey the relations

S(A,)+38(A,)=0. (50)

The sumsS ; determine the dependence of the kinetic
coefficients on the lattice parameter. Unfortunately, these

CAI2(0)=A[6as,+5(Bart Bod)+(Bra—Ba)CO66)], sums could not be calculated analytically. Therefore we com-
puted them numerically taking into account the interaction
Utr(e)ctzrltzr(a):41_8[6682,2+(ﬁ4,2+ B2 with 100 nearest neighbors, which should provide enough

accuracy for the lattice parameters of interest. The results are
—(B24— B42)C0960)], (45) shown in Figs. 3 and 4, and listed in Tables I, I, and III.

[1] J. Robinson and J. Russel, Report of the Committee on [4] H. Y. Hao and H. J. Maris, Phys. Rev. @, 064302(2001).
Waves, Reports of the 7th Meeting of the British Association [5] S. Popel and M. Yu, Contrib. Plasma Phg§, 103 (1995.
for the Advancement of Scien@®hn Murray, London, 1838 [6] Y. Nakamura and A. Sarma, Phys. Plasr8a8921(200J.

p. 417. [7] N. Rao, P. Shukla, and M. Yu, Planet. Space S8, 543
[2] D. Korteweg and G. de Vries, Philos. MaBp, 422 (1895. (1990.
[3] V. Petviashvili, Reviews of Plasma Physi¢€onsultants Bu- [8] A. V. Ivlev and G. Morfill, Phys. Rev. B63, 026412(2001).
reau, New York, 1986 Vol. 9, pp. 59-101. [9] F. Melandsg, Phys. Plasmas3890(1996.

026411-10



ANISOTROPIC PLASMA CRYSTAL SOLITONS PHYSICAL REVIEW B6, 026411 (2002

[10] D. Samsonov, A. V. Ivlev, R. A. Quinn, G. Morfill, and S. 5141(2000.

Zhdanov, Phys. Rev. Let88, 095004(2002. [22] D. Samsonov, J. Goree, Z. W. Ma, A. Bhattacharjee, H. M.
[11] E. Whipple, Rep. Prog. Phyd4, 1197(1981). Thomas, and G. E. Morfill, Phys. Rev. Le&3, 3649(1999.
[12] H. lkezi, Phys. Fluid®9, 1764(1986. [23] D. Samsonov, J. Goree, H. M. Thomas, and G. E. Moffill,
[13] J. H. Chu and Lin I, Phys. Rev. Leff2, 4009(1994). Phys. Rev. B61, 5557 (2000.

[14] Y. Hayashi and K. Tachibana, Jpn. J. Appl. Phys., PaB82 [24] F. M. Peeters and X. Wu, Phys. Rev.34, 3109(1987.

L804 (1994. [25] D. H. E. Dubin, Phys. Plasmag 3895(2000.

[15] H. Thomas, G. E. Mofrfill, V. Demmel, J. Goree, B. Feuer- [26] U. Konopka, L. Ratke, and H. M. Thomas, Phys. Rev. L#g.

bacher, and D. Malmann, Phys. Rev. Let?3, 652(1994). 1269(1997.

[16] A. Melzer, T. Trottenberg, and A. Piel, Phys. Lett1A1, 301 [27] U. Konopka, G. E. Morfill, and L. Ratke, Phys. Rev. L,

(1994). 891 (2000.

[17] H. Thomas and G. Morfill, Naturé_ondon 379, 806 (1996. [28] A. Melzer, S. Nunomura, D. Samsonov, Z. W. Ma, and J.
[18] J. Maddox, NaturélLondon 370, 411 (1994). Goree, Phys. Rev. B2, 4162(2000.
[19] S. Vladimirov, P. Shevchenko, and N. Cramer, Phys. Plasmag29] M. J. Lighthill, Proc. R. Soc. London, Ser. 209, 28 (1967).

5, 4 (1998. [30] M. Ablowitz and H. SegurSolitons and the Inverse Scattering
[20] A. Homann, A. Melzer, R. Madani, and A. Piel, Phys. Lett. A Transform(SIAM, Philadelphia, 19811

173 242(1998. [31] B. B. KadomtsevCollective Phenomena in Plasmésauka,
[21] S. Nunomura, D. Samsonov, and J. Goree, Phys. Rev.84tt. Moscow, 1976.

026411-11



